AI ロボット駆動科学シンポジウム 2025 実施レポート

<2025.01/30 開催>

AI ロボット駆動科学イニシアティブ設立準備事務局

2025.05.08 発行

■ 開催概要

AI ロボット駆動科学シンポジウム 2025 が 2025 年 1 月 30 日に品川ザ・グランドホールにて開催された。

主催: · JST 未来社会創造事業

- 「ロボティックバイオロジーによる生命科学の加速」(高橋恒一代表)

- 「マテリアル探索空間拡張プラットフォームの構築」(長藤圭介代表)

・JST ムーンショット型研究開発事業

一「人と融和して知の創造・越境をする AI ロボット」(牛久祥孝 PM)

-「人と AI ロボットの創造的共進化によるサイエンス開拓」(原田香奈子 PM)

協賛: ・オムロン サイニックエックス株式会社:研究懇談会 ドリンク・軽食提供

協力: ・国立研究開発法人理化学研究所 科学研究基盤モデル開発プログラム (AGIS)

・JST さきがけ「研究開発プロセス革新」領域(竹内一郎研究総括)

時刻	プログラム	登壇者
13:00-14:00	第1部 招待講演	► 橋本 幸士 京都大学理学研究科 教授
		・ 泰地 真弘人 理化学研究所 科学研究基盤モデル開発プログラム ディレクター
		• 前田 理 北海道大学 化学反応創成研究拠点 拠点長
14:15-15:45	第2部 パネルセッション	・ 福島 俊一 (国立研究開発法人科学技術振興機構研究 開発戦略センター フェロー)
		▶ 相澤 彰子(国立情報学研究所 教授)
		・ 岡田 康志 (理化学研究所 チームリーダー / 東京 大学 教授)
		竹内 一郎(名古屋大学 教授)
		・ 申 ウソク (産業技術総合研究所 首席研究員)
		一杉 太郎 (東京大学 教授 / 東京科学大学 特任教授)
		· 谷口 忠大(京都大学 教授)

時刻	プログラム	登壇者
16:00-16:55	第3部 研究ショートトーク	・ 林祐輔(一般社団法人 AIアライメントネットワーク)
		► 田村亮(国立研究開発法人 物質・材料研究機構)
		・藤田美紀(RIPPS 理化学研究所)
		▶ 松熊研司 (ロボティック・バイオロジー・インスティ テュート株式会社)
		中島優作(大阪大学大学院)
		吉川成輝(東京科学大学)
		木野日織(国立研究開発法人 物質・材料研究機構)
		・ 藤澤逸平 (株式会社アラヤ)
		► Onur Boyar (Nagoya University)
		尾崎勇介(理化学研究所)
		西田孝三(理化学研究所)
		長谷部颯汰(東京大学)
		・ 鵜澤尊規(理化学研究所)
		・ 玉木 聡志 (株式会社 molcure)
		▶ 厚見悠 (SyntheticGestalt KK)
17:00-19:00	研究懇談会	
	・ポスター発表実施 ・軽食&ドリンク付き(Supported by OMRON SINIC X Corporation)	

■ AI ロボット駆動科学シンポジウム 2025 報告書

1. 開催概要

2025 年 1 月 30 日、品川ザ・グランドホールにて「AI ロボット駆動科学シンポジウム 2025」が開催されました。本シンポジウムは、AI とロボット技術を活用した新しい科学研究の推進を目指す「AI ロボット駆動科学イニシアティブ」が主催し、JST 未来社会創造事業や JST ムーンショット型研究開発事業などの関連プロジェクト、理化学研究所 AGIS プログラム、JST さきがけ「研究開発プロセス革新」領域、そしてオムロン サイニックエックス株式会社の協賛・協力のもと実施されました。

産業界、学術研究機関、政府関係者など、多彩なバックグラウンドを持つ約200名の参加者が集結し、AI ロボット駆動科学の最新動向、今後の展望、そして課題について活発な議論・情報共有が行われました。2023年の第1回開催の流れを汲み、分野横断的な連携や学際研究の拡大、多様な研究者の育成・連携強化をさらに加速することが主な目的とされました。

2. シンポジウムの背景と問題提起

シンポジウムの冒頭では、現代科学が直面する課題と、AI ロボット駆動科学への期待が示されました。理化学研究所の竹内氏は、生命、生体系、社会システム、気候変動など、平衡から遠く複雑な実態を持つ系に対して、従来の要素還元的なアプローチでは限界があることを指摘しました。これらの系は要素一つ一つの個性を考慮する必要があり、単純化して理解することが困難です。この壁を打ち破らなければ、現代科学の主要な課題への十分なアプローチは不可能であるという問題意識が共有されました。

そこで、複雑な世界を複雑なまま捉える新たなアプローチとして、「データ起点」の研究スタイルの重要性が強調されました。証明したい仮説を最初に設定する従来の手法に加え、まずデータを網羅的に取得し、そこから仮説を導き出すアプローチを組み合わせ、両者をサイクルとして回していくことが望ましいとされました。

さらに、専門分化が進んだ現代科学において「知の融合」が不可欠であると指摘されました。この新しいアプローチ確立の障壁として、「プロセスの断絶」(実験、データ処理、仮説構築など各段階の連携不足)、「分野間の知識連携の不足」、「人間の能力の限界」が挙げられ、これらの課題解決の鍵として AI とロボット技術への期待が述べられました。

3. 招待講演: AI ロボット駆動科学の最前線

第1部では、各分野の第一人者による招待講演が行われ、最先端の取り組みが紹介されました。

- 橋本 幸士 氏(京都大学理学研究科 教授)「学習物理学: AI と物理学の融合研究領域」: 物理学の基礎方程式と大規模データ・機械学習を融合させる「学習物理学(Learning Physics)」の 潮流を紹介。AI ロボット技術が物理学の既存アプローチを再定義し、理論と実装の協働によって 新たな学問領域を切り拓く可能性を強調しました。
- 泰地 真弘人 氏 (理化学研究所 科学研究基盤モデル開発プログラムディレクター) 「AGIS: 科学 向け基盤モデルの開発・応用プロジェクト」:

理研が推進する AGIS (AI for Science) プログラムを紹介。LLM を拡張し幅広い学問知を統合する「科学基盤モデル」の開発と、ロボット自動実験との連携により、研究プラットフォームを構築し、これまでにないスピードとスケールでのイノベーション創出を目指す展望を述べました。

• 前田 理 氏 (北海道大学 化学反応創成研究拠点 拠点長)「WPI-ICReDD における化学反応開発の 効率化・自動化への取り組み」:

北海道大学 WPI-ICReDD における「反応機構解析×自動合成×機械学習」の融合研究を紹介。計算化学、機械学習、自動合成ロボットを統合し、化学反応経路ネットワークの構築や反応条件最適化を高速化する取り組みと、ハイドロゲル開発や触媒探索の成功例を示し、分野融合の重要性を訴えました。

4. パネルセッション: AI ロボット駆動科学の展望と課題

第2部では、福島俊一氏(国立研究開発法人科学技術振興機構研究開発戦略センター)のモデレートのもと、相澤彰子氏(国立情報学研究所)、岡田康志氏(理化学研究所/東京大学)、竹内一郎氏(名古屋大学)、申ウソク氏(産業技術総合研究所)、一杉太郎氏(東京大学/東京科学大学)、谷口忠大氏(京都大学)の6名のパネリストが、情報学、バイオ、マテリアル、物理、哲学、政策など多様な視点から活発な議論を展開しました。

主な論点:

- 。 **実験自動化・自律化:** バイオ・材料分野での自動分注・合成ロボットの普及が進む一方、粉 末の扱いなどロボット化が困難な対象への対応や、モジュール技術・標準化が課題。
- **基盤モデル(LLM)と研究者の協働:** ChatGPT 等の活用が始まる一方、分野固有の知識を統合した「科学基盤モデル」は発展途上。推論の厳密性・信頼性の担保が重要。
- **分野横断・学際的アプローチ:** AI・ロボット技術の水平展開の利点に対し、分野特有の暗黙 知の形式化、標準プラットフォーム・データフォーマット・プロトコルの普及が急務。
- 。 **AI ロボットと人間の役割分担・教育:** 人間は仮説設定や創造的発想に注力可能になる一方、「AI の提案を人間が理解できない」ギャップの解消や、分野横断型人材(例:ロボティクス×バイオ)の育成が重要。
- **議論の詳細:** データ量の問題(十分か、質はどうか)、分野ごとのデータ公開状況の違い、研究サイクル全体の効率化、異なる分野の研究者が連携する際の課題(言語・文化の違い)、AI技術者が科学研究に参入する際の障壁などが具体的に議論されました。

ディープラーニングとロボット自動化技術の合流により科学研究プロセスが根本的に変わりつつ あるとし、学界・産業界・政策当局を巻き込んだ戦略的推進の必要性の議論がありました。

5. 研究ショートトーク:多様な分野からの最新成果

第 3 部では、15 名の若手・中堅研究者が 5 分間のショートプレゼン形式で最新の研究成果を発表しました。

• 発表テーマ例: 自動化学スクリーニングロボット、ラボ用汎用ロボット、粉体・メカノケミカル反応の自動制御、低コスト実験自動化システム、オントロジー活用によるデータ処理・知識伝達、AIのリーズニング能力評価、創薬への生成的 AI 応用、材料合成条件自動探索、遺伝子ネットワーク予測 AI、記号創発システム科学、医療向け LLM、モジュール型自動実験システムなど。

• 共通点と議論: いずれの発表もロボットと AI を組み合わせて実験を加速・高精度化する試みであり、再現性・トレーサビリティの確保、専門家の暗黙知の AI への統合戦略などが活発に議論されました。

6. 研究懇談会:ポスター発表と交流

ショートトーク登壇者によるポスターセッションでは、多くの参加者が各ブースを訪れ、活発な質疑応答や意見交換が行われました。その後、オムロン サイニックエックス株式会社協賛の軽食・ドリンクとともに、企業、大学、研究所の垣根を越えた交流が深まりました。AI アルゴリズムやロボットアームの実演に関する議論、共同研究や人材採用に関する相談も見られ、会場は熱気に包まれました。

7. 閉会挨拶・次回予告

シンポジウムの最後に、長藤圭介氏(東京大学)と長田氏(東京大学)が登壇しました。

長藤氏は、AI ロボット駆動科学が「自動化・自律化」「生成 AI 活用」「総合知に基づく新たな発見」を後押しする大きなトレンドであることを再確認しつつ、データ駆動研究と数理・理論的アプローチの両立、暗黙知の取り込み、評価指標・プロトコル標準化などの課題、そして産学官連携の重要性を総括しました。長田氏は、多様な分野の研究者が一堂に会した意義を強調し、今後のコミュニティ発展、特に学生・若手研究者の育成や産業界との連携強化への期待を述べました。

次回予告として、2025 年度後半に第3回研究会、2026年以降も定期的なシンポジウム開催を目指し、広く参加・協力者を募っていく方針が示されました。

8. まとめ

本シンポジウムは、AI とロボット技術が駆動する新たな科学研究、「AI ロボット駆動科学」が持つ大きな可能性と、その実現に向けた多岐にわたる課題を、多様な分野の研究者・関係者が共有・議論する貴重な機会となりました。技術開発(自動化、標準化、AI モデル)、分野間の連携と知識融合(暗黙知形式化、プラットフォーム構築)、データ駆動型アプローチの推進、そしてこれらを担う人材育成が、今後の科学研究の発展に不可欠であることが改めて認識されました。今後、国際連携や学際的教育、社会への発信にも力を入れ、世界をリードする学術コミュニティとしての発展が期待されます。